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The Hijazi inequality on manifolds with boundary
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Abstract

In this paper, we prove the Hijazi inequality on compact Riemannian spin manifolds under two boundary
conditions: the condition associated with a chirality operator and the Riemannian version of the MIT bag
condition. We then show that the limiting case is characterized as being a half-sphere for the first condition
whereas the equality cannot be achieved for the second.
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1. Introduction

In [8], Friedrich established an inequality relating the eigenvalues of the Dirac operator on a
compact n-dimensional Riemannian spin manifold without boundary with its scalar curvature R.
This inequality is given by

λ2
≥

n

4(n − 1)
R0, (1)

where R0 denotes the infimum of the scalar curvature of M. For n ≥ 3, using the conformal
covariance of the Dirac operator Hijazi [10] proved that

λ2
≥

n

4(n − 1)
µ1(L), (2)
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where µ1(L) is the first eigenvalue of the conformal Laplacian given by L =
4(n−1)

n−2 ∆ + R.
The operator L is a second-order conformally covariant differential operator relating the scalar
curvatures of two metrics in the same conformal class. In [11], Hijazi derives a conformal lower
bound for any eigenvalues λ of the Dirac operator involving the Yamabe invariant µ(M). Indeed,
he proved that if n ≥ 3, then

λ2 vol(M, g)
2
n ≥

n

4(n − 1)
µ(M). (3)

The Yamabe invariant µ(M) has been introduced in [24] in order to solve the following
problem now called the Yamabe problem: given a closed compact Riemannian manifold (Mn, g),
is there a metric in the conformal class of g such that the scalar curvature is constant? For n = 2,
Bär [1] showed that

λ2
≥

2π χ(M2)

Area(M2, g)
, (4)

where χ(M2) is the Euler characteristic class. A natural question is then to ask whether those
results still hold if we consider manifolds with boundary. In [14], the authors prove Friedrich-
type inequalities under four elliptic boundary conditions and under some curvature assumptions
(the non-negativity of the mean curvature). Two of these boundary conditions are (global)
Atiyah–Patodi–Singer type conditions and two local boundary conditions. The present paper
being devoted to the conformal aspect of those results, the choice of the boundary condition is
important. As pointed out in [16], the Atiyah–Patodi–Singer type conditions are not conformally
invariant, while the local boundary conditions are indeed conformally invariant. Moreover we do
not assume that the boundary ∂M has non-negative mean curvature and then we prove:

Theorem 1. Let (Mn, g) be an n-dimensional connected compact Riemannian spin manifold
with non-empty boundary ∂M. For n ≥ 3 if M has positive Yamabe invariant and for n = 2 if
M is a surface of genus 0 with compact connected boundary, then:

(1) Under the CHI boundary condition associated with a chirality operator (see Section 4),
the spectrum of the Dirac operator D of M is a sequence of unbounded real numbers
{λCHI

k /k ∈ Z}. For n ≥ 3, any eigenvalue λCHI of the Dirac operator satisfies

(λCHI)2 ≥
n

4(n − 1)
µ1(L).

For n = 2, we have

(λCHI)2 ≥
2π

Area(M2, g)
.

Moreover, equality holds if and only if the manifold M is isometric to the half-sphere Sn
+(r)

with radius r , where r depends on the first eigenvalue of the Dirac operator under this
boundary condition.

(2) Under the MIT boundary condition (see Remark 3), the spectrum of the Dirac operator D is
an unbounded discrete set of complex numbers {λMIT

k /k ∈ Z} with positive imaginary part.
For n ≥ 3, any eigenvalue λMIT of the Dirac operator satisfies

|λMIT
|
2 >

n

4(n − 1)
µ1(L).
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For n = 2, we have

|λMIT
|
2 >

2π

Area(M2, g)
.

The real number µ1(L) is the first eigenvalue of the eigenvalue boundary problem{
Lu = µ1(L)u on M
Bu = 0 along ∂M,

with B the mean curvature operator acting on smooth functions on the manifold M.

Finally, we extend Inequality (3) to the case of manifolds with boundary. The author would
like to thank the referee for helpful comments on this.

2. Spin manifolds with boundary

In this section, we summarize some basic facts about spin manifolds with boundary. Standard
references on this subject can be found in [16]. Let (Mn, g) be an n-dimensional Riemannian
spin manifold with boundary and denote by ∇ the Levi-Civita connection on the tangent bundle
TM and the associated bundles. We choose a spin structure and denote by Spin(M) the principal
bundle with structural group Spinn given by this spin structure. The spinor bundle on the manifold
M is then the complex vector bundle of rank 2[

n
2 ], denoted by ΣM, associated with the complex

spinor representation. This representation provides a Clifford multiplication

γ : Cl (M) −→ End(ΣM),

which is a fibre preserving algebra morphism. The spinor bundle ΣM is endowed with a natural
Hermitian product, denoted by 〈 , 〉, and with a spinorial Levi-Civita connection ∇ acting on
spinor fields, i.e. on sections of the spinor bundle (see [18] or [9], for example). We can easily
show that the spinorial connection ∇ is compatible with the Hermitian product 〈 , 〉, i.e.

X〈ψ, ϕ〉 = 〈∇Xψ, ϕ〉 + 〈ψ,∇Xϕ〉, (5)

for all ψ, ϕ ∈ Γ (ΣM) and for all X ∈ Γ (TM). Moreover, they also satisfy the following
properties:

〈γ (X)ψ, γ (X)ϕ〉 = g(X, X)〈ψ, ϕ〉 (6)

∇X (γ (Y )ψ) = γ (∇X Y )ψ + γ (Y )∇Xψ, (7)

for all ψ, ϕ ∈ Γ (ΣM) and for all X, Y ∈ Γ (TM). Note that identity (6) implies that Clifford
multiplication by a unit tangent vector field is skew-symmetric on ΣM. The Dirac operator D on
ΣM is then the first-order elliptic operator locally given by

D : Γ (ΣM) −→ Γ (ΣM)

ψ 7−→

n∑
i=1

γ (ei )∇eiψ,

where {e1, . . . , en} is a local orthonormal frame of TM.
Consider now the boundary ∂M which is an oriented Riemannian hypersurface of M with

induced orientation and Riemannian structure. Then there exists a unit vector field ν normal to
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the boundary which allows one to pull back the spin structure over M to a spin structure over the
boundary ∂M. Hence we have that the restriction

S(∂M) := ΣM|∂M

is a left module over Cl (∂M) with Clifford multiplication

γ S
: Cl (∂M) −→ End(S(∂M))

given by γ S(X)ψ = γ (X)γ (ν)ψ for all X ∈ Γ (TM) and ψ ∈ Γ (S (∂M)). Now let ∇
∂M be

the Levi-Civita connection of the boundary (∂M, g) and let (e1, . . . , en−1, en = ν) be a local
orthonormal frame of TM; then the Riemannian Gauss formula states that for 1 ≤ i, j ≤ n − 1,

∇ei e j = ∇
∂M
ei

e j + g(Aei , e j )ν,

where AX = −∇Xν is the shape operator of the boundary ∂M. We can then relate the two associ-
ated spin connections. Indeed, if ∇ (resp. ∇

S) is the Levi-Civita connection on the spinor bundle
ΣM (resp. S(∂M)), we have the spinorial Gauss Formula (for more details, see [23,2] or [20])

(∇Xψ)|∂M = ∇
S
Xψ|∂M +

1
2
γ S(AX)ψ|∂M

for all X ∈ Γ (T(∂M)) and for all ψ ∈ Γ (ΣM). The spinor bundle S(∂M) is also endowed with
a Hermitian metric denoted by 〈 , 〉 induced from that on ΣM. The induced metric, the Clifford
multiplication and the Levi-Civita connection satisfy properties (5), (6) and (7), i.e. the spinor
bundle S(∂M) is a Dirac bundle.

The induced spin structure on the boundary allows one to construct an intrinsic spinor
bundle Σ (∂M) over ∂M. This bundle is naturally endowed with a Hermitian metric, a Clifford
multiplication γ ∂M and a spinorial Levi-Civita connection ∇

∂M. It is not difficult to show that
this bundle can be identified with the restricted spinor bundle S(∂M) if n is odd. In this case,
the Clifford multiplication and the Levi-Civita connection on Σ (∂M) correspond to the Clifford
multiplication and the Levi-Civita connection on S(∂M). If n is even, the spinor bundle S(∂M)
could be identified with the direct sum Σ (∂M)⊕ Σ (∂M). Moreover, the Clifford multiplication
γ S corresponds to γ ∂M

⊕ −γ ∂M and the Levi-Civita connection ∇
S to ∇

∂M
⊕ ∇

∂M.
We can now define several Dirac operators acting on sections of these bundles (for a complete

review of these operators, see [20]). However, in our case, the most important one is the boundary
Dirac operator acting on sections of S(∂M). This operator is given by composition of the Clifford
multiplication γ S and the spinorial Levi-Civita connection ∇

S. This operator is denoted by DS

and is locally given by

DS(ψ) =

n−1∑
i=1

γ S(ei )∇
S
ei
ψ.

Note that in the case of a closed compact manifold without boundary, the classical Dirac
operator has exactly one self-adjoint L2 extension, so it has real discrete spectrum. In the case of
a manifold with boundary, a defect of symmetry appears, given by the formula∫

M
〈Dψ, ϕ〉dv(g)−

∫
M

〈ψ,Dϕ〉dv(g) = −

∫
∂M

〈γ (ν)ψ, ϕ〉ds(g), (8)

for ψ, ϕ ∈ Γ (ΣM), and where ν is the inner unit vector field along the boundary and dv(g)
(resp. ds(g)) is the volume form of the manifold M (resp. the boundary ∂M). According to this
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formula, we note that the Dirac operator D is not symmetric, but we will see that, under suitable
boundary conditions, the l.h.s. of (8) vanishes.

In order to prove Theorem 1 which is an estimate of the fundamental Dirac operator eigen-
values of the ambient manifold M under suitable boundary conditions, we will give an in-
equality called the “spinorial Reilly inequality” relating the geometry of the manifold M and
that of its boundary ∂M (see [14,15] or [16]). The spinorial Reilly inequality is based on the
Schrödinger–Lichnerowicz formula, given by

D2
= ∇

∗
∇ +

1
4

R,

where R is the scalar curvature of M. An integral version of this formula leads to (see [14] for a
proof of the following proposition):

Proposition 2. For all spinor fields ψ ∈ Γ (ΣM), we have∫
∂M

(
〈DSψ,ψ〉 −

n − 1
2

H|ψ |
2
)

ds(g) ≥

∫
M

(
1
4

R|ψ |
2
−

n − 1
n

|Dψ |
2
)

dv(g), (9)

where R is the scalar curvature of the manifold M, H =
1

n−1 tr(A) is the mean curvature of the
boundary and dv(g) (resp. ds(g)) is the Riemannian volume form of M (resp. ∂M). Moreover
equality occurs if the spinor field ψ is a twistor–spinor, i.e. if it satisfies Pψ = 0 where P is the
twistor operator acting on ΣM which is locally given for all X ∈ Γ (TM) by

PXψ = ∇Xψ +
1
n
γ (X)Dψ. (10)

The proof of Theorem 1 is based on the conformal covariance of the fundamental Dirac
operator D of the manifold M; we now summarize some classical facts about Dirac operators
in a conformal class of the Riemannian metric g. So consider a nowhere vanishing function h
on the manifold M, and let ḡ = h2g be a conformal change of the metric. Then we have an
obvious identification between the two SOn-principal bundles of g and ḡ-orthonormal oriented
frames denoted respectively by SO(M) and SO(M). We can thus identify the corresponding
Spinn-principal bundles Spin(M) and Spin(M) and this leads to a bundle isometry

ΣM −→ ΣM
ϕ 7−→ ϕ.

(11)

For more details, we refer the reader to [13,10] or [3]. We can also relate the corresponding
Levi-Civita connections and Clifford multiplications. Indeed, denoting by ∇ and γ the associated
data which act on the bundle ΣM, we can easily show that

γ = hγ, ∇Xψ − ∇Xψ = −
1

2h
γ (X)γ (∇h)ψ −

1
2h

g(∇h, X)ψ. (12)

A result due to Hitchin [13] gives the conformal covariance of the Dirac operator:

Proposition 3. Let D (resp. D) be the fundamental Dirac operator on the manifold (Mn, g) (resp.
(Mn, ḡ)); then we have the following identity:

D(ψ) = h−
n+1

2 D(h
n−1

2 ψ), (13)

for all ψ ∈ Γ (ΣM).
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It is obvious that this conformal change of the metric induces a conformal change of the metric
on the boundary. We can then identify the connections and the Clifford multiplications of S(∂M)

and S(∂M). In the same way, the boundary Dirac operators DS and D
S
, acting respectively on

S(∂M) and S(∂M), satisfy

D
S
(ψ) = h−

n
2 DS(h

n−2
2 ψ), (14)

for all ψ ∈ Γ (S(∂M)). For more details on these identifications, we refer the reader to [16].

3. Local elliptic boundary conditions for the Dirac operator

In order to prove Theorem 1, we have to use suitable boundary conditions for the fundamental
Dirac operator D on the manifold M. In other words, we look for conditions

B : L2(S(∂M)) −→ L2(V),

where V is a Hermitian vector bundle over the boundary ∂M, to impose on the restrictions of
spinor fields on M to the boundary ∂M such that the Dirac operator is a Fredholm operator, i.e.
for given data Φ ∈ Γ (ΣM) and χ ∈ Γ (V) the following boundary value problem:{

Dψ = Φ on M
B (ψ|∂M) = χ along ∂M,

(BP)

has a unique solution up to a finite dimensional kernel. Moreover the following eigenvalue
problem:{

Dϕ = λϕ on M
B (ϕ|∂M) = 0 along ∂M

(EBP)

should have a discrete spectrum with finite dimensional eigenspaces, unless it is the whole
complex plane. The preceding properties are satisfied if the operator B satisfies some ellipticity
conditions. We follow [14] for the notion of ellipticity of a boundary condition for the Dirac
operator (for more general cases, we refer the reader to [17,19]). In fact, the principal tool for
finding well-posed conditions was discovered by Caldéron and is called the Caldéron projector
of the Dirac operator D, denoted by P+(D). This projector is a pseudo-differential operator of
order zero which has the particularity that its principal symbol σ(P+(D)) detects ellipticity, i.e.
such that problems (BP) and (EBP) could be solved. Indeed, in [4], the authors show that a
pseudo-differential operator

B : L2(ΣM|∂M) −→ L2(V)

defines an elliptic boundary condition for the operator D if it satisfies the following property:

σ(B)(u)|Im σ(P+(D))(u) : Im σ(P+(D))(u) ⊂ ΣpM −→ Vp

is an isomorphism on its image for all nontrivial u ∈ Tp(∂M) and all p ∈ ∂M. Moreover if the
rank of the vector bundle V and the dimension of Im σ(P+(D)) are the same then the boundary
condition is said to be local. As the principal symbol of the Caldéron projector of the Dirac
operator is given by (see [4])

σ(P+(D))(u) =
1

2|u|
(iγ S(u)+ |u|Id)
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for each nontrivial u ∈ Tp(∂M) and p ∈ ∂M, we obtain the following result which gives ellip-
ticity of a boundary condition for the Dirac operator D on a manifold with boundary (see [14]):

Proposition 4. Let (Mn, g) be an n-dimensional compact Riemannian spin manifold with non-
empty boundary ∂M. Then, a pseudo-differential operator

B : L2(S(∂M)) −→ L2(V),

where V → ∂M is a Hermitian vector bundle, is an elliptic boundary condition for the Dirac
operator D of M if and only if its principal symbol

σ(B) : T(∂M) −→ HomC(S(∂M),V)

satisfies the following two conditions:

(1) Ker σ(B)(u) ∩ {ϕ ∈ ΣpM/ iγ (ν)γ (u)ϕ = −|u|ϕ} = {0},

(2) dim Im σ(B)(u) =
1
2 dim ΣpM = 2[

n
2 ]−1.

Moreover, if V is a bundle with rank 1
2 dim ΣpM = 2[

n
2 ]−1, we have a local elliptic boundary

condition. When these ellipticity conditions are satisfied, the following eigenvalue boundary
problem:{

Dψ = λψ on M
B(ψ|∂M) = 0 along ∂M,

has a discrete spectrum with finite dimensional eigenspaces consisting of smooth spinor fields,
unless it is the whole complex plane.

We are now ready to study elliptic boundary conditions for the Dirac operator.

4. The condition associated with a chirality operator

In this section, we consider an n-dimensional compact Riemannian spin manifold (Mn, g)
with non-empty boundary equipped with a chirality operator. First recall the definition of such
an operator. A linear map

G : Γ (ΣM) −→ Γ (ΣM)

is a chirality operator if it satisfies the following properties:

G2
= Id, 〈Gϕ,Gψ〉 = 〈ϕ,ψ〉

∇X (Gψ) = G(∇Xψ), γ (X)Gψ = −G(γ (X)ψ)
(15)

for all ϕ, ψ ∈ Γ (ΣM) and X ∈ Γ (TM). Note that such an operator does not exist on all
manifolds. However, we can note that if the dimension n = 2m of the manifold M is even, then
G = γ (ω2m), where ω2m is the volume element of the spinor bundle, is a chirality operator. Now
consider the fiber preserving endomorphism

γ (ν)G : Γ (S(∂M)) −→ Γ (S(∂M))

acting on the restriction of the spinor bundle ΣM to the boundary. We can easily check that this
map is pointwise self-adjoint and is involutive. So the bundle S(∂M) can be decomposed into two
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eigensubbundles V± associated with the eigenvalues ±1. Now we can define the two pointwise
orthogonal projections:

B±

CHI : L2(S(∂M)) −→ L2(V±)

ϕ 7−→
1
2
(Id ± γ (ν)G)ϕ,

and it is easy to check that these operators satisfy the ellipticity conditions given in Proposition 4
(see [14]).

Remark 1. It is important to note that a chirality operator G acting on sections of ΣM allows
one to construct a chirality operator G acting on ΣM. Indeed, the operator defined by

G : ΣM −→ ΣM
ψ 7−→ G(ψ) := Gψ

is a chirality operator acting on ΣM.

We can now prove the first part of Theorem 1:

Theorem 5. Let (Mn, g) be an n-dimensional compact Riemannian spin manifold with non-
empty boundary ∂M and with positive Yamabe invariant. Under the CHI boundary condition,
the spectrum of the Dirac operator D of M is a non-decreasing sequence of real numbers
{λCHI

k /k ∈ Z} which satisfies

(λCHI
k )2 ≥

n

4(n − 1)
µ1(L).

Moreover, equality holds if and only if M is conformally equivalent to the half-sphere Sn
+(r),

where r depends on the first eigenvalue of D.

Proof. The spectrum is real because under this boundary condition, the Dirac operator is
symmetric. Indeed, if ϕ and ψ satisfy B±

CHI(ϕ|∂M) = B±

CHI(ψ|∂M) = 0, then we have

〈γ (ν)ψ, ϕ〉 = 〈G(γ (ν)ψ),Gϕ〉 = −〈γ (ν)ψ, ϕ〉,

and hence by Formula (8), the symmetry property follows by integration. In fact, we can show
that under this boundary condition, the Dirac operator extends to a self-adjoint linear operator on
L2 (see [6] for this boundary condition or [17] for a more general case). Furthermore, we have
seen in Section 3 that the eigenvalue boundary problem{

Dψ = λCHI
k ψ on M

B±

CHI(ψ|∂M) = 0 along ∂M,
(16)

admits a smooth solution ψ ∈ Γ (ΣM) because of the ellipticity of the CHI boundary condition.

Let g = f
4

n−2 g be a conformal change of the metric and consider the spinor field ϕ = f −
n−1
n−2ψ ∈

Γ (ΣM). Using the conformal covariance of the Dirac operator given in Proposition 3, the spinor
field ϕ ∈ Γ (ΣM) satisfies

D(ϕ) = λCHI
k f −

2
n−2 ϕ. (17)
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Now putting this spinor field in the spinorial Reilly inequality (9) expressed in the metric g
gives ∫

M

(
1
4

R|ϕ|
2
−

n − 1
n

|λCHI
k |

2 f −
4

n−2 |ϕ|
2
)

dv(ḡ)

≤

∫
∂M

(
〈D

S
(ϕ), ϕ〉 −

n − 1
2

H|ϕ|
2
)

ds(ḡ), (18)

where R (resp. H) is the scalar curvature (resp. the mean curvature) of the manifold (Mn, ḡ) (resp.
of the boundary (∂M, ḡ)). However for n ≥ 3, we can express the corresponding curvatures using
the conformal Laplacian

Lu =
4(n − 1)

n − 2
1u + Ru,

and the conformal mean curvature operator

Bu =
2

n − 2
∂u

∂ν
+ Hu.

Indeed, we have

R = f −
n+2
n−2 L f, H = f −

n
n−2 B f, (19)

where the function f is the conformal factor of the metric ḡ. Now recall that the eigenvalue
boundary problem{

Lu = µ1(L)u on M
Bu = 0 along ∂M,

appearing in the statement of this theorem, was introduced by Escobar in [7] in the context of the
Yamabe problem for manifolds with boundary. He proved that the sign of the corresponding first
eigenvalue µ1(L), whose variational characterization is given by

µ1(L) = inf
u∈C1(M),u 6=0

∫
M

(
2

n−2 |∇u|
2
+

1
2(n−1)Ru2

)
dv(g)+

∫
∂M Hu2 ds(g)∫

M u2 ds(g)
,

is invariant under conformal change of the metric on M and that an associated eigenfunction
f has to be positive. Moreover, Escobar showed that µ1(L) has to be positive (resp. zero or
negative) if and only if there exists a conformally related metric on M with positive (resp. zero or
negative) scalar curvature and such that the boundary is minimal. Now choosing the conformal
factor of g to be a positive eigenfunction f1 associated with µ1(L) in Inequality (18) and using
the relations (19) leads to∫

M

(
1
4
µ1(L)−

n − 1
n

|λCHI
|
2
)

|ϕ|
2 f

−
4

n−2
1 dv(ḡ) ≤

∫
∂M

〈D
S
(ϕ), ϕ〉ds(ḡ). (20)

We now prove that the boundary term vanishes under the CHI boundary condition. Indeed,
using the conformal covariance of the boundary Dirac operator given in (14), we have

D
S
(ϕ) = f

−
n

n−2
1 DS( f

−
1

n−2
1 ψ).
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Note that the volume forms of the boundary ∂M in the metric g and ḡ = f
4

n−2
1 g are related by

the formula

ds(ḡ) = f
2(n−1)

n−2
1 ds(g),

and then the boundary term is given by∫
∂M

〈D
S
(ϕ), ϕ〉ds(ḡ) =

∫
∂M

〈DS( f
−

1
n−2

1 ψ), f
−

1
n−2

1 ψ〉ds(g)

=

∫
∂M

〈γ (d( f
−

1
n−2

1 ))ψ, f
−

1
n−2

1 ψ〉ds(g)+

∫
∂M

f
−

2
n−2

1 〈DSψ,ψ〉ds(g).

We pointed out that the first term of the preceding identity is purely imaginary, so
Inequality (20) gives∫

M

(
1
4
µ1(L)−

n − 1
n

|λCHI
k |

2
)

|ϕ|
2 f

−
4

n−2
1 dv(ḡ) ≤

∫
∂M

f
−

2
n−2

1 〈DSψ,ψ〉ds(g). (21)

Using the fact that the spinor ψ satisfies the eigenvalue boundary problem (16) and that
GDS

= DSG (using property (15)), we obtain

〈DSψ,ψ〉 = 〈γ (ν)G(DSψ), γ (ν)Gψ〉 = −〈DSψ,ψ〉,

and hence the desired inequality follows. Assume now that equality is achieved. So equality
occurs in (18) and then by Proposition 2, the spinor field ϕ satisfies the following equation:

PX (ϕ) = ∇Xϕ +
1
n
γ (X)D(ϕ) = 0, ∀X ∈ Γ (TM).

Moreover, using Eq. (17), we conclude that this spinor field satisfies the generalized Killing
equation

∇Xϕ +
λ

n
f
−

2
n−2

1 γ (X)ϕ = 0,

for all X ∈ Γ (TM) and where λ
n f

−
2

n−2
1 is a real-valued function. However, it is a well-known

fact (see [10]) that, because f1 is a real-valued function, f1 is constant. Then the spinor field ϕ
(and so the spinor field ψ) is a real Killing spinor, i.e. it satisfies the Killing equation

∇Xψ +
c

2
γ (X)ψ = 0, ∀X ∈ Γ (TM),

where c is a positive real number given by c =
2λ
n . Moreover this implies that the length |ψ |

2 is a
non-zero constant and that (M, g) is an Einstein manifold with Ricci curvature Ric = (n −1)c2g
whose boundary is minimal. Now consider the function given by F = 〈G(ψ), ψ〉 which is real
valued because the chirality operator G is pointwise self-adjoint. We then check that F is not
identically zero on M since using Formula (8), we have

nc
∫

M
F dv(g) =

∫
∂M

|ψ |
2 ds(g),

and then, as ψ is a non-zero constant length spinor field, we obtain c > 0 and F 6≡ 0. We now
prove that the function F satisfies the boundary problem{

1F = nc2F on M
F|∂M = 0 along ∂M.
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An easy calculation using the Killing equation gives 1F = nc2F on M. The spinor field ψ
satisfies the eigenvalue boundary problem (16), and in particular we have

γ (ν)Gψ|∂M = ∓ψ|∂M

and then

F|∂M = 〈Gψ|∂M, ψ|∂M〉 = ±〈γ (ν)ψ|∂M, ψ|∂M〉,

and hence F|∂M = 0 since the right-hand side of the last equation is purely imaginary. Applying
the Obata Theorem for a manifold with boundary proved by Reilly in [21] allows us to conclude
that M is conformally equivalent to Sn

+(r) with r =
1
c . �

The proof of Theorem 5 is based on a well-chosen conformal metric g = f
4

n−2 g which has
no sense if n = 2. However, we can apply, with slight modifications, the argument used in [1]
for the case of compact surfaces without boundary.

Theorem 6. Let (M2, g) be a compact Riemannian spin surface of genus 0. Suppose ∂M is
compact connected. Under the CHI boundary condition, the spectrum of the Dirac operator D
of M is a non-decreasing sequence of real numbers {λCHI

k /k ∈ Z} which satisfies(
λCHI

k

)2
≥

2π

Area(M2, g)
. (22)

Equality holds for the smallest eigenvalue if and only if M2 is isometric to a standard hemisphere
S2

+(r) with r =
1

λCHI
±1

.

Proof. We first show that under this boundary condition, any eigenvalue λCHI of the Dirac
operator satisfies(

λCHI
)2

≥
1
2

sup
u

inf
M

(
R e2u

)
, (23)

where the supremum is taken over all the functions u satisfying ∂u
∂ν

+ H = 0, where R (resp. R)
is the scalar curvature of g (resp. g = e2u g) and H is the geodesic curvature of ∂M. So for a
metric g = e2u g with ∂u

∂ν
+ H = 0, in the conformal class of g, the associated Dirac operators

are related by the following identity:

D(e−
1
2 uψ) = e−

3
2 uDψ.

Using the argument given in the proof of Theorem 5 and the fact that H = 0 for all u such that
∂u
∂ν

+ H = 0 leads to the inequality∫
M

(
R

4
e2u

−
|λMIT

k |
2

2

)
e−2u

|ϕ|
2dv(g) ≤

∫
∂M

〈DS(ϕ), ϕ〉ds(g),

where ϕ = e−
1
2 uψ and ψ ∈ Γ (ΣM) satisfies the boundary problem (16). The conformal

covariance of the CHI boundary condition gives (23). We now give an explicit calculation of
the right-hand side of Inequality (23). First, remark that for n = 2, the transformations of the
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scalar curvature and the geodesic curvature giveRe2u
= R + 21u

Heu
=

∂u

∂ν
+ H,

and then, by assumption on the function u, H = 0. Now, note that for such a function u

inf
M
(Re2u) ≤

1

Area(M2, g)

(∫
M

Re2u dv(g)+ 2
∫
∂M

H ds(g)

)
≤

1

Area(M2, g)

(∫
M

R dv(g)+ 2
∫
∂M

H ds(g)

)
=

4πχ(M2)

Area(M2, g)

by the Stokes and Gauss–Bonnet Formula for surfaces with boundary (see [5]). Let u1 a solution
of the boundary problem (see [22] for example)

21u1 =
1

Area(M2, g)

(∫
M

R dv(g)+ 2
∫
∂M

H ds(g)

)
− R on M

∂u1

∂ν
+ H = 0 along ∂M,

then an easy calculation gives

inf
M
(Re2u1) =

4πχ(M2)

Area(M2, g)
.

From Inequality (23), we obtain(
λCHI

k

)2
≥

2πχ(M2)

Area(M2, g)
.

However, the surface M is of genus 0 and its boundary has one connected component; then
χ(M) = 1 and so Inequality (22) follows immediately. The equality case is treated as in the proof
of Theorem 5. �

Remark 2. The Euler–Poincaré characteristic of a surface of genus g ≥ 0 and with m ≥ 1
boundary components is given by (see [12])

χ(M) = 2 − 2g − m.

It is a simple fact that

χ(M) > 0 ⇔ χ(M) = 1 ⇔ (g = 0 et m = 1) .

We can now relate the Yamabe invariant of the manifold M with the eigenvalues of the
Dirac operator under the boundary condition associated with a chirality operator. This conformal
invariant, denoted by µ(M), has been introduced by Escobar in [7] in order to solve the Yamabe
problem for manifolds with boundary and has the following variational characterization:

µ(M) = infu∈C1(M),u 6=0

∫
M

(
2

n−2 |∇u|
2
+

1
2(n−1)Ru2

)
dv(g)+

∫
∂M Hu2 ds(g)(∫

M u
2n

n−2 ds(g)
) n−2

n

.
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He proved that µ(M) has the same sign as µ1(L) and it is invariant with respect to conformal
changes of the metric on M. The Hölder inequality applied to an eigenfunction f1 associated
with µ1(M) gives

µ1(L) ≥
µ(M)

vol(M, g)
2
n

and equality implies that f1 is constant. Thus, from Theorems 5 and 6, we have:

Corollary 7. Let (Mn, g) be an n-dimensional compact Riemannian spin manifold with non-
empty compact connected boundary ∂M and n ≥ 2. Under the CHI boundary condition, any
eigenvalue λCHI of the Dirac operator D satisfies

|λCHI
|
2 vol(M, g)

2
n ≥

n

4(n − 1)
µ(M). (24)

Remark 3. Theorems 5 and 6 can also be proved for the MIT bag boundary condition used in
[14] and [16] for example. This condition is defined as being the orthogonal projection on the
eigensubbundles of the pointwise endomorphism iγ (ν) acting on S(∂M) associated with the
eigenvalues ±1, i.e.

B±

MIT : L2(S(∂M)) −→ L2(V±)

ϕ 7−→
1
2
(Id ± iγ (ν))ϕ.

This differential operator satisfies the Lopatinsky–Shapiro ellipticity conditions, and so it
defines a local elliptic boundary condition for the Dirac operator of the manifold M. We can then
show (see [14]) that under the B−

MIT (resp. B+

MIT) condition, the spectrum of the Dirac operator
is a discrete set of complex numbers with positive (resp. negative) imaginary part. Furthermore,
we can show that any eigenvalue λMIT under this boundary condition satisfies for n ≥ 3

|λMIT
|
2 >

n

4(n − 1)
µ1(L), (25)

and for n = 2

|λMIT
|
2 >

2π

Area(M2, g)
. (26)

Equality cannot be achieved in (25) and (26); otherwise there should exist on the manifold M
a generalized Killing spinor with imaginary Killing function and then the scalar curvature should
be non-positive. However, if equality holds, the scalar curvature of M is positive and so there is
a contradiction.
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